Mac Studio's M1 Ultra Chip Outperforms on Computational Fluid Dynamics Benchmarks
Published on May 01, 2022 at 12:04AM
Dr. Craig Hunter is a mechanical/aerospace engineer with over 25 years of experience in software development. And now Dixie_Flatline (Slashdot reader #5,077) describes Hunter's latest experiment: Craig Hunter has been running Computational Fluid Dynamics (CFD) benchmarks on Macs for years--he has results going back to 2010 with an Intel Xeon 5650, with the most recent being a 28-core Xeon W from 2019. He has this to say about why he thinks CFD benchmarks are a good test: "As shown above, we see a pretty typical trend where machines get less and less efficient as more and more cores join the computation. This happens because the computational work begins to saturate communications on the system as data and MPI instructions pass between the cores and memory, creating overhead. It's what makes parallel CFD computations such a great real world benchmark. Unlike simpler benchmarks that tend to make CPUs look good, the CFD benchmark stresses the entire system and shows us how things hold up as conditions become more and more challenging." With just 6 cores, the Mac Studio's M1 Ultra surpasses the 2019 Xeon before literally going off the original chart. He had to double the x-axis just to fit the M1's performance in. Unsurprisingly, he seems impressed: "We know from Apple's specs and marketing materials that the M1 Ultra has an extremely high 800 GB/sec memory bandwidth and an even faster 2.5 TB/sec interface between the two M1 Max chips that make up the M1 Ultra, and it shows in the CFD benchmark. This leads to a level of CPU performance scaling that I don't even see on supercomputers."
Published on May 01, 2022 at 12:04AM
Dr. Craig Hunter is a mechanical/aerospace engineer with over 25 years of experience in software development. And now Dixie_Flatline (Slashdot reader #5,077) describes Hunter's latest experiment: Craig Hunter has been running Computational Fluid Dynamics (CFD) benchmarks on Macs for years--he has results going back to 2010 with an Intel Xeon 5650, with the most recent being a 28-core Xeon W from 2019. He has this to say about why he thinks CFD benchmarks are a good test: "As shown above, we see a pretty typical trend where machines get less and less efficient as more and more cores join the computation. This happens because the computational work begins to saturate communications on the system as data and MPI instructions pass between the cores and memory, creating overhead. It's what makes parallel CFD computations such a great real world benchmark. Unlike simpler benchmarks that tend to make CPUs look good, the CFD benchmark stresses the entire system and shows us how things hold up as conditions become more and more challenging." With just 6 cores, the Mac Studio's M1 Ultra surpasses the 2019 Xeon before literally going off the original chart. He had to double the x-axis just to fit the M1's performance in. Unsurprisingly, he seems impressed: "We know from Apple's specs and marketing materials that the M1 Ultra has an extremely high 800 GB/sec memory bandwidth and an even faster 2.5 TB/sec interface between the two M1 Max chips that make up the M1 Ultra, and it shows in the CFD benchmark. This leads to a level of CPU performance scaling that I don't even see on supercomputers."
Read more of this story at Slashdot.
Comments
Post a Comment