Skip to main content

Slashdot: Building the World's Brightest X-Ray Laser

Building the World's Brightest X-Ray Laser
Published on December 31, 2021 at 12:30PM
Thirty feet underground and a stone's throw from Stanford University, scientists are putting the finishing touches on a laser that could fundamentally change the way they study the building blocks of the universe. CNET reports: When completed next year, the Linac Coherent Light Source II, or the LCLS-II , will be the second world-class X-ray laser at the Department of Energy's SLAC National Accelerator Laboratory. CNET was given the rare opportunity to film inside the more than 2-mile long tunnel ahead of the new laser's launch. The first LCLS, in operation since 2009, creates a beam capable of 120 light pulses per second. The LCLS-II will be capable of up to 1 million pulses per second, and a beam 10,000 times brighter than its predecessor. You can think of the LCLS as being like a microscope with atomic resolution. At its core it is a particle accelerator, a device that speeds up charged particles and channels them into a beam. That beam is then run through a series of alternating magnets (a device called an undulator) to produce X-rays. Scientists can use those X-rays to create what they call molecular movies. These are snapshots of atoms and molecules in motion, captured within a few quadrillionths of a second, and strung together like a film. Scientists across nearly every scientific field have come from all over the world to run their experiments with the LCLS. Among other things, their molecular movies have shown chemical reactions as they happened, demonstrated the behavior of atoms inside stars, and produced live snapshots detailing the process of photosynthesis. Though both lasers accelerate electrons to nearly the speed of light, they'll each do it differently. The LCLS's accelerator pushes the electrons down a copper pipe that operates at room temperature, designed to be activated only in short bursts. But the LCLS-II is designed to run continuously, which means it generates massive amounts of heat. A copper cavity would absorb too much of that heat. That's why engineers turned to a new superconducting accelerator, composed of dozens of 40-foot-long devices called cryomodules designed to run at two degrees above absolute zero (-456 degrees Fahrenheit). They're kept at operating temperature by a massive cryogenics plant above ground. [T]he LCLS-II will allow SLAC scientists answer questions they've been trying to solve for years. "How does energy transfer happen inside molecular systems? How does charge transfer happen? Once we understand some of these principles, we can start to apply them to understand how we can do artificial photosynthesis, how can we build better solar cells." Scientists at SLAC hope to produce their first electron beam with the LCLS-II in January, followed by their first X-ray in the summer, which they'll refer to as their first "big light" event.

Read more of this story at Slashdot.

Comments

Popular posts from this blog

Slashdot: AT&T Says Leaked Data of 70 Million People Is Not From Its Systems

AT&T Says Leaked Data of 70 Million People Is Not From Its Systems Published on March 20, 2024 at 02:15AM An anonymous reader quotes a report from BleepingComputer: AT&T says a massive trove of data impacting 71 million people did not originate from its systems after a hacker leaked it on a cybercrime forum and claimed it was stolen in a 2021 breach of the company. While BleepingComputer has not been able to confirm the legitimacy of all the data in the database, we have confirmed some of the entries are accurate, including those whose data is not publicly accessible for scraping. The data is from an alleged 2021 AT&T data breach that a threat actor known as ShinyHunters attempted to sell on the RaidForums data theft forum for a starting price of $200,000 and incremental offers of $30,000. The hacker stated they would sell it immediately for $1 million. AT&T told BleepingComputer then that the data did not originate from them and that its systems were not breached. ...

Slashdot: US Plans $825 Million Investment For New York Semiconductor R&D Facility

US Plans $825 Million Investment For New York Semiconductor R&D Facility Published on November 02, 2024 at 03:00AM The Biden administration is investing $825 million in a new semiconductor research and development facility in Albany, New York. Reuters reports: The New York facility will be expected to drive innovation in EUV technology, a complex process necessary to make semiconductors, the U.S. Department of Commerce and Natcast, operator of the National Semiconductor Technology Center (NTSC) said. The launch of the facility "represents a key milestone in ensuring the United States remains a global leader in innovation and semiconductor research and development," Commerce Secretary Gina Raimondo said. From the U.S. Department of Commerce press release: EUV Lithography is essential for manufacturing smaller, faster, and more efficient microchips. As the semiconductor industry pushes the limits of Moore's Law, EUV lithography has emerged as a critical technology to ...

Slashdot: AT&T, T-Mobile Prep First RedCap 5G IoT Devices

AT&T, T-Mobile Prep First RedCap 5G IoT Devices Published on October 15, 2024 at 03:20AM The first 5G Internet of Things (IoT) devices are launching soon. According to Fierce Wireless, T-Mobile plans to launch its first RedCap devices by the end of the year, while AT&T's devices are expected sometime in 2025. From the report: All of this should pave the way for higher performance 5G gadgets to make an impact in the world of IoT. RedCap, which stands for reduced capabilities, was introduced as part of the 3GPP's Release 17 5G standard, which was completed -- or frozen in 3GPP terms -- in mid-2022. The specification, which is also called NR-Light, is the first 5G-specific spec for IoT. RedCap promises to offer data transfer speeds of between 30 Mbps to 80 Mbps. The RedCap spec greatly reduces the bandwidth needed for 5G, allowing the signal to run in a 20 MHz channel rather than the 100 MHz channel required for full scale 5G communications. Read more of this story at...