Skip to main content

Slashdot: CRISPR Gene-Editing Experiment Partly Restores Vision In Legally Blind Patients

CRISPR Gene-Editing Experiment Partly Restores Vision In Legally Blind Patients
Published on September 30, 2021 at 09:00AM
An anonymous reader quotes a report from NPR: Carlene Knight's vision was so bad that she couldn't even maneuver around the call center where she works using her cane. But that's changed as a result of volunteering for a landmark medical experiment. Her vision has improved enough for her to make out doorways, navigate hallways, spot objects and even see colors. Knight is one of seven patients with a rare eye disease who volunteered to let doctors modify their DNA by injecting the revolutionary gene-editing tool CRISPR directly into cells that are still in their bodies. Knight and [another volunteer in the experiment, Michael Kalberer] gave NPR exclusive interviews about their experience. This is the first time researchers worked with CRISPR this way. Earlier experiments had removed cells from patients' bodies, edited them in the lab and then infused the modified cells back into the patients. [...] CRISPR is already showing promise for treating devastating blood disorders such as sickle cell disease and beta thalassemia. And doctors are trying to use it to treat cancer. But those experiments involve taking cells out of the body, editing them in the lab, and then infusing them back into patients. That's impossible for diseases like [Leber congenital amaurosis, or LCA], because cells from the retina can't be removed and then put back into the eye. So doctors genetically modified a harmless virus to ferry the CRISPR gene editor and infused billions of the modified viruses into the retinas of Knight's left eye and Kalberer's right eye, as well as one eye of five other patients. The procedure was done on only one eye just in case something went wrong. The doctors hope to treat the patients' other eye after the research is complete. Once the CRISPR was inside the cells of the retinas, the hope was that it would cut out the genetic mutation causing the disease, restoring vision by reactivating the dormant cells. The procedure didn't work for all of the patients, who have been followed for between three and nine months. The reasons it didn't work might have been because their dose was too low or perhaps because their vision was too damaged. But Kalberer, who got the lowest dose, and one volunteer who got a higher dose, began reporting improvement starting at about four to six weeks after the procedure. Knight and one other patient who received a higher dose improved enough to show improvement on a battery of tests that included navigating a maze. For two others, it's too soon to tell. None of the patients have regained normal vision -- far from it. But the improvements are already making a difference to patients, the researchers say. And no significant side effects have occurred. Many more patients will have to be treated and followed for much longer to make sure the treatment is safe and know just how much this might be helping.

Read more of this story at Slashdot.

Comments

Popular posts from this blog

Slashdot: AT&T Says Leaked Data of 70 Million People Is Not From Its Systems

AT&T Says Leaked Data of 70 Million People Is Not From Its Systems Published on March 20, 2024 at 02:15AM An anonymous reader quotes a report from BleepingComputer: AT&T says a massive trove of data impacting 71 million people did not originate from its systems after a hacker leaked it on a cybercrime forum and claimed it was stolen in a 2021 breach of the company. While BleepingComputer has not been able to confirm the legitimacy of all the data in the database, we have confirmed some of the entries are accurate, including those whose data is not publicly accessible for scraping. The data is from an alleged 2021 AT&T data breach that a threat actor known as ShinyHunters attempted to sell on the RaidForums data theft forum for a starting price of $200,000 and incremental offers of $30,000. The hacker stated they would sell it immediately for $1 million. AT&T told BleepingComputer then that the data did not originate from them and that its systems were not breached. ...

Slashdot: US Plans $825 Million Investment For New York Semiconductor R&D Facility

US Plans $825 Million Investment For New York Semiconductor R&D Facility Published on November 02, 2024 at 03:00AM The Biden administration is investing $825 million in a new semiconductor research and development facility in Albany, New York. Reuters reports: The New York facility will be expected to drive innovation in EUV technology, a complex process necessary to make semiconductors, the U.S. Department of Commerce and Natcast, operator of the National Semiconductor Technology Center (NTSC) said. The launch of the facility "represents a key milestone in ensuring the United States remains a global leader in innovation and semiconductor research and development," Commerce Secretary Gina Raimondo said. From the U.S. Department of Commerce press release: EUV Lithography is essential for manufacturing smaller, faster, and more efficient microchips. As the semiconductor industry pushes the limits of Moore's Law, EUV lithography has emerged as a critical technology to ...

Slashdot: AT&T, T-Mobile Prep First RedCap 5G IoT Devices

AT&T, T-Mobile Prep First RedCap 5G IoT Devices Published on October 15, 2024 at 03:20AM The first 5G Internet of Things (IoT) devices are launching soon. According to Fierce Wireless, T-Mobile plans to launch its first RedCap devices by the end of the year, while AT&T's devices are expected sometime in 2025. From the report: All of this should pave the way for higher performance 5G gadgets to make an impact in the world of IoT. RedCap, which stands for reduced capabilities, was introduced as part of the 3GPP's Release 17 5G standard, which was completed -- or frozen in 3GPP terms -- in mid-2022. The specification, which is also called NR-Light, is the first 5G-specific spec for IoT. RedCap promises to offer data transfer speeds of between 30 Mbps to 80 Mbps. The RedCap spec greatly reduces the bandwidth needed for 5G, allowing the signal to run in a 20 MHz channel rather than the 100 MHz channel required for full scale 5G communications. Read more of this story at...