World's Faster AI Supercomputer Built from 6,159 NVIDIA A100 Tensor Core GPUs
Published on May 31, 2021 at 05:04PM
Slashdot reader 4wdloop shared this report from NVIDIA's blog, joking that maybe this is where all NVIDIA's chips are going: It will help piece together a 3D map of the universe, probe subatomic interactions for green energy sources and much more. Perlmutter, officially dedicated Thursday at the National Energy Research Scientific Computing Center (NERSC), is a supercomputer that will deliver nearly four exaflops of AI performance for more than 7,000 researchers. That makes Perlmutter the fastest system on the planet on the 16- and 32-bit mixed-precision math AI uses. And that performance doesn't even include a second phase coming later this year to the system based at Lawrence Berkeley National Lab. More than two dozen applications are getting ready to be among the first to ride the 6,159 NVIDIA A100 Tensor Core GPUs in Perlmutter, the largest A100-powered system in the world. They aim to advance science in astrophysics, climate science and more. In one project, the supercomputer will help assemble the largest 3D map of the visible universe to date. It will process data from the Dark Energy Spectroscopic Instrument (DESI), a kind of cosmic camera that can capture as many as 5,000 galaxies in a single exposure. Researchers need the speed of Perlmutter's GPUs to capture dozens of exposures from one night to know where to point DESI the next night. Preparing a year's worth of the data for publication would take weeks or months on prior systems, but Perlmutter should help them accomplish the task in as little as a few days. "I'm really happy with the 20x speedups we've gotten on GPUs in our preparatory work," said Rollin Thomas, a data architect at NERSC who's helping researchers get their code ready for Perlmutter. DESI's map aims to shed light on dark energy, the mysterious physics behind the accelerating expansion of the universe. A similar spirit fuels many projects that will run on NERSC's new supercomputer. For example, work in materials science aims to discover atomic interactions that could point the way to better batteries and biofuels. Traditional supercomputers can barely handle the math required to generate simulations of a few atoms over a few nanoseconds with programs such as Quantum Espresso. But by combining their highly accurate simulations with machine learning, scientists can study more atoms over longer stretches of time. "In the past it was impossible to do fully atomistic simulations of big systems like battery interfaces, but now scientists plan to use Perlmutter to do just that," said Brandon Cook, an applications performance specialist at NERSC who's helping researchers launch such projects. That's where Tensor Cores in the A100 play a unique role. They accelerate both the double-precision floating point math for simulations and the mixed-precision calculations required for deep learning.
Published on May 31, 2021 at 05:04PM
Slashdot reader 4wdloop shared this report from NVIDIA's blog, joking that maybe this is where all NVIDIA's chips are going: It will help piece together a 3D map of the universe, probe subatomic interactions for green energy sources and much more. Perlmutter, officially dedicated Thursday at the National Energy Research Scientific Computing Center (NERSC), is a supercomputer that will deliver nearly four exaflops of AI performance for more than 7,000 researchers. That makes Perlmutter the fastest system on the planet on the 16- and 32-bit mixed-precision math AI uses. And that performance doesn't even include a second phase coming later this year to the system based at Lawrence Berkeley National Lab. More than two dozen applications are getting ready to be among the first to ride the 6,159 NVIDIA A100 Tensor Core GPUs in Perlmutter, the largest A100-powered system in the world. They aim to advance science in astrophysics, climate science and more. In one project, the supercomputer will help assemble the largest 3D map of the visible universe to date. It will process data from the Dark Energy Spectroscopic Instrument (DESI), a kind of cosmic camera that can capture as many as 5,000 galaxies in a single exposure. Researchers need the speed of Perlmutter's GPUs to capture dozens of exposures from one night to know where to point DESI the next night. Preparing a year's worth of the data for publication would take weeks or months on prior systems, but Perlmutter should help them accomplish the task in as little as a few days. "I'm really happy with the 20x speedups we've gotten on GPUs in our preparatory work," said Rollin Thomas, a data architect at NERSC who's helping researchers get their code ready for Perlmutter. DESI's map aims to shed light on dark energy, the mysterious physics behind the accelerating expansion of the universe. A similar spirit fuels many projects that will run on NERSC's new supercomputer. For example, work in materials science aims to discover atomic interactions that could point the way to better batteries and biofuels. Traditional supercomputers can barely handle the math required to generate simulations of a few atoms over a few nanoseconds with programs such as Quantum Espresso. But by combining their highly accurate simulations with machine learning, scientists can study more atoms over longer stretches of time. "In the past it was impossible to do fully atomistic simulations of big systems like battery interfaces, but now scientists plan to use Perlmutter to do just that," said Brandon Cook, an applications performance specialist at NERSC who's helping researchers launch such projects. That's where Tensor Cores in the A100 play a unique role. They accelerate both the double-precision floating point math for simulations and the mixed-precision calculations required for deep learning.
Read more of this story at Slashdot.
Comments
Post a Comment