Antimatter Atoms Can Be Precisely Manipulated and Cooled With Lasers
Published on March 31, 2021 at 10:55PM
One of our most precise mechanisms for controlling matter has now been applied to antimatter atoms for the first time. From a report: Laser cooling, which slows the motion of particles so they can be measured more precisely, can make antihydrogen atoms slow down by an order of magnitude. Antimatter particles have the same mass as particles of ordinary matter, but the opposite charge. An antihydrogen atom is made out of an antiproton and a positron, the antimatter equivalent of an electron. Makoto Fujiwara at TRIUMF, Canada's national particle accelerator centre, and his colleagues used an antihydrogen trapping experiment called ALPHA-2 at the CERN particle physics lab near Geneva, Switzerland, to create clouds of about 1000 antihydrogen atoms in a magnetic trap. The team developed a laser that shoots particles of light called photons at the right wavelength to slow down any anti-atoms that happen to be moving directly towards the laser, slowing them down bit by bit. "It's kind of like we're shooting a tiny ball at the atom, and the ball is very small, so the slowing down in this collision is very small, but we do it many times and then eventually the big atom will be slowed down," says Fujiwara. The group managed to slow the anti-atoms down by more than a factor of 10.
Published on March 31, 2021 at 10:55PM
One of our most precise mechanisms for controlling matter has now been applied to antimatter atoms for the first time. From a report: Laser cooling, which slows the motion of particles so they can be measured more precisely, can make antihydrogen atoms slow down by an order of magnitude. Antimatter particles have the same mass as particles of ordinary matter, but the opposite charge. An antihydrogen atom is made out of an antiproton and a positron, the antimatter equivalent of an electron. Makoto Fujiwara at TRIUMF, Canada's national particle accelerator centre, and his colleagues used an antihydrogen trapping experiment called ALPHA-2 at the CERN particle physics lab near Geneva, Switzerland, to create clouds of about 1000 antihydrogen atoms in a magnetic trap. The team developed a laser that shoots particles of light called photons at the right wavelength to slow down any anti-atoms that happen to be moving directly towards the laser, slowing them down bit by bit. "It's kind of like we're shooting a tiny ball at the atom, and the ball is very small, so the slowing down in this collision is very small, but we do it many times and then eventually the big atom will be slowed down," says Fujiwara. The group managed to slow the anti-atoms down by more than a factor of 10.
Read more of this story at Slashdot.
Comments
Post a Comment