Skip to main content

Slashdot: Quantum Computer Solves Decades-Old Problem Three Million Times Faster Than a Classical Computer

Quantum Computer Solves Decades-Old Problem Three Million Times Faster Than a Classical Computer
Published on February 28, 2021 at 12:04AM
ZDNet reports: Scientists from quantum computing company D-Wave have demonstrated that, using a method called quantum annealing, they could simulate some materials up to three million times faster than it would take with corresponding classical methods. Together with researchers from Google, the scientists set out to measure the speed of simulation in one of D-Wave's quantum annealing processors, and found that performance increased with both simulation size and problem difficulty, to reach a million-fold speedup over what could be achieved with a classical CPU... The calculation that D-Wave and Google's teams tackled is a real-world problem; in fact, it has already been resolved by the 2016 winners of the Nobel Prize in Physics, Vadim Berezinskii, J. Michael Kosterlitz and David Thouless, who studied the behavior of so-called "exotic magnetism", which occurs in quantum magnetic systems.... Instead of proving quantum supremacy, which happens when a quantum computer runs a calculation that is impossible to resolve with classical means, D-Wave's latest research demonstrates that the company's quantum annealing processors can lead to a computational performance advantage... "What we see is a huge benefit in absolute terms," said Andrew King, director of performance research at D-Wave. "This simulation is a real problem that scientists have already attacked using the algorithms we compared against, marking a significant milestone and an important foundation for future development. This wouldn't have been possible today without D-Wave's lower noise processor." Equally as significant as the performance milestone, said D-Wave's team, is the fact that the quantum annealing processors were used to run a practical application, instead of a proof-of-concept or an engineered, synthetic problem with little real-world relevance. Until now, quantum methods have mostly been leveraged to prove that the technology has the potential to solve practical problems, and is yet to make tangible marks in the real world. Looking ahead to the future, long-time Slashdot reader schwit1 asks, "Is this is bad news for encryption that depends on brute-force calculations being prohibitively difficult?"

Read more of this story at Slashdot.

Comments

Popular posts from this blog

Slashdot: AT&T Says Leaked Data of 70 Million People Is Not From Its Systems

AT&T Says Leaked Data of 70 Million People Is Not From Its Systems Published on March 20, 2024 at 02:15AM An anonymous reader quotes a report from BleepingComputer: AT&T says a massive trove of data impacting 71 million people did not originate from its systems after a hacker leaked it on a cybercrime forum and claimed it was stolen in a 2021 breach of the company. While BleepingComputer has not been able to confirm the legitimacy of all the data in the database, we have confirmed some of the entries are accurate, including those whose data is not publicly accessible for scraping. The data is from an alleged 2021 AT&T data breach that a threat actor known as ShinyHunters attempted to sell on the RaidForums data theft forum for a starting price of $200,000 and incremental offers of $30,000. The hacker stated they would sell it immediately for $1 million. AT&T told BleepingComputer then that the data did not originate from them and that its systems were not breached. &q

Slashdot: AT&T, T-Mobile Prep First RedCap 5G IoT Devices

AT&T, T-Mobile Prep First RedCap 5G IoT Devices Published on October 15, 2024 at 03:20AM The first 5G Internet of Things (IoT) devices are launching soon. According to Fierce Wireless, T-Mobile plans to launch its first RedCap devices by the end of the year, while AT&T's devices are expected sometime in 2025. From the report: All of this should pave the way for higher performance 5G gadgets to make an impact in the world of IoT. RedCap, which stands for reduced capabilities, was introduced as part of the 3GPP's Release 17 5G standard, which was completed -- or frozen in 3GPP terms -- in mid-2022. The specification, which is also called NR-Light, is the first 5G-specific spec for IoT. RedCap promises to offer data transfer speeds of between 30 Mbps to 80 Mbps. The RedCap spec greatly reduces the bandwidth needed for 5G, allowing the signal to run in a 20 MHz channel rather than the 100 MHz channel required for full scale 5G communications. Read more of this story at

Slashdot: AT&T Can't Hang Up On Landline Phone Customers, California Agency Rules

AT&T Can't Hang Up On Landline Phone Customers, California Agency Rules Published on June 22, 2024 at 01:50AM An anonymous reader quotes a report from Ars Technica: The California Public Utilities Commission (CPUC) yesterday rejected AT&T's request to end its landline phone obligations. The state agency also urged AT&T to upgrade copper facilities to fiber instead of trying to shut down the outdated portions of its network. AT&T asked the state to eliminate its Carrier of Last Resort (COLR) obligation, which requires it to provide landline telephone service to any potential customer in its service territory. A CPUC administrative law judge recommended rejection of the application last month, and the commission voted to dismiss AT&T's application with prejudice on Thursday. "Our vote to dismiss AT&T's application made clear that we will protect customer access to basic telephone service... Our rules were designed to provide that assurance,