Skip to main content

Slashdot: Chasing AMD, Intel Promises Full Memory Encryption in Upcoming CPUs

Chasing AMD, Intel Promises Full Memory Encryption in Upcoming CPUs
Published on March 01, 2020 at 12:04AM
"Intel's security plans sound a lot like 'we're going to catch up to AMD,'" argues FOSS advocate and "mercenary sysadmin" Jim Salter at Ars Technica, citing a "present-and-future" presentation by Anil Rao and Scott Woodgate at Intel's Security Day that promised a future with Full Memory Encryption but began with Intel SGX (launched with the Skylake microarchitecture in 2015). Salter describes SGX as "one of the first hardware encryption technologies designed to protect areas of memory from unauthorized users, up to and including the system administrators themselves." SGX is a set of x86_64 CPU instructions which allows a process to create an "enclave" within memory which is hardware encrypted. Data stored in the encrypted enclave is only decrypted within the CPU -- and even then, it is only decrypted at the request of instructions executed from within the enclave itself. As a result, even someone with root (system administrator) access to the running system can't usefully read or alter SGX-protected enclaves. This is intended to allow confidential, high-stakes data processing to be safely possible on shared systems -- such as cloud VM hosts. Enabling this kind of workload to move out of locally owned-and-operated data centers and into massive-scale public clouds allows for less expensive operation as well as potentially better uptime, scalability, and even lower power consumption. Intel's SGX has several problems. The first and most obvious is that it is proprietary and vendor-specific -- if you design an application to utilize SGX to protect its memory, that application will only run on Intel processors... Finally, there are potentially severe performance impacts to utilization of SGX. IBM's Danny Harnik tested SGX performance fairly extensively in 2017, and he found that many common workloads could easily see a throughput decrease of 20 to 50 percent when executed inside SGX enclaves. Harnik's testing wasn't 100 percent perfect, as he himself made clear -- in particular, in some cases his compiler seemed to produce less-optimized code with SGX than it had without. Even if one decides to handwave those cases as "probably fixable," they serve to highlight an earlier complaint -- the need to carefully develop applications specifically for SGX use cases, not merely flip a hypothetical "yes, encrypt this please" switch.... After discussing real-world use of SGX, Rao moved on to future Intel technologies -- specifically, full-memory encryption. Intel refers to its version of full-memory encryption as TME (Total Memory Encryption) or MKTME (Multi-Key Total Memory Encryption). Unfortunately, those features are vaporware for the moment. Although Intel submitted an enormous Linux kernel patchset last May for enabling those features, there are still no real-world processors that offer them... This is probably a difficult time to give exciting presentations on Intel's security roadmap. Speculative prediction vulnerabilities have hurt Intel's processors considerably more than their competitors', and the company has been beaten significantly to market by faster, easier-to-use hardware memory encryption technologies as well. Rao and Woodgate put a brave face on things by talking up how SGX has been and is being used in Azure. But it seems apparent that the systemwide approach to memory encryption already implemented in AMD's Epyc CPUs -- and even in some of their desktop line -- will have a far greater lasting impact. Intel's slides about their own upcoming full memory encryption are labeled "innovations," but they look a lot more like catching up to their already-established competition.

Read more of this story at Slashdot.

Comments

Popular posts from this blog

Slashdot: US Army Soldier Arrested In AT&T, Verizon Extortions

US Army Soldier Arrested In AT&T, Verizon Extortions Published on January 01, 2025 at 02:35AM An anonymous reader quotes a report from KrebsOnSecurity: Federal authorities have arrested and indicted a 20-year-old U.S. Army soldier on suspicion of being Kiberphant0m, a cybercriminal who has been selling and leaking sensitive customer call records stolen earlier this year from AT&T and Verizon. As first reported by KrebsOnSecurity last month, the accused is a communications specialist who was recently stationed in South Korea. Cameron John Wagenius was arrested near the Army base in Fort Hood, Texas on Dec. 20, after being indicted on two criminal counts of unlawful transfer of confidential phone records. The sparse, two-page indictment (PDF) doesn't reference specific victims or hacking activity, nor does it include any personal details about the accused. But a conversation with Wagenius' mother -- Minnesota native Alicia Roen -- filled in the gaps. Roen said that prio...

Slashdot: US Army Soldier Pleads Guilty To AT&T and Verizon Hacks

US Army Soldier Pleads Guilty To AT&T and Verizon Hacks Published on February 20, 2025 at 01:31AM Cameron John Wagenius pleaded guilty to hacking AT&T and Verizon and stealing a massive trove of phone records from the companies, according to court records filed on Wednesday. From a report: Wagenius, who was a U.S. Army soldier, pleaded guilty to two counts of "unlawful transfer of confidential phone records information" on an online forum and via an online communications platform. According to a document filed by Wagenius' lawyer, he faces a maximum fine of $250,000 and prison time of up to 10 years for each of the two counts. Wagenius was arrested and indicted last year. In January, U.S. prosecutors confirmed that the charges brought against Wagenius were linked to the indictment of Connor Moucka and John Binns, two alleged hackers whom the U.S. government accused of several data breaches against cloud computing services company Snowflake, which were among the ...

Slashdot: AT&T Now Lets Customers Lock Down Account To Prevent SIM Swapping Attacks

AT&T Now Lets Customers Lock Down Account To Prevent SIM Swapping Attacks Published on July 02, 2025 at 01:30AM AT&T has launched a new Account Lock feature designed to protect customers from SIM swapping attacks. The security tool, available through the myAT&T app, prevents unauthorized changes to customer accounts including phone number transfers, SIM card changes, billing information updates, device upgrades, and modifications to authorized users. SIM swapping attacks occur when criminals obtain a victim's phone number through social engineering techniques, then intercept messages and calls to access two-factor authentication codes for sensitive accounts. The attacks have become increasingly common in recent years. AT&T began gradually rolling out Account Lock earlier this year, joining T-Mobile, Verizon, and Google Fi, which already offer similar fraud prevention features. Read more of this story at Slashdot.