Skip to main content

Slashdot: CRISPR Now Cuts and Splices Whole Chromosomes

CRISPR Now Cuts and Splices Whole Chromosomes
Published on August 31, 2019 at 07:33AM
Researchers report they've adapted CRISPR and combined it with other tools to cut and splice large genome fragments with ease. The study, conducted by researchers at the Medical Research Council (MRC) Laboratory of Molecular Biology in Cambridge, U.K., has been published in this week's issue of Science. Science Magazine reports: The tried and true tools of genetic engineering simply can't handle long stretches of DNA. Restriction enzymes, the standard tool for cutting DNA, can snip chunks of genetic material and join the ends to form small circular segments that can be moved out of one cell and into another. (Stretches of linear DNA don't survive long before other enzymes, called endonucleases, destroy them.) But the circles can accommodate at most a couple of hundred thousand bases, and synthetic biologists often want to move large segments of chromosomes containing multiple genes, which can be millions of bases long or more. "You can't get very large pieces of DNA in and out of cells," says Jason Chin, a synthetic biologist at the Medical Research Council (MRC) Laboratory of Molecular Biology in Cambridge, U.K. What's more, those cutting and pasting tools can't be targeted precisely, and they leave unwanted DNA at the splicing sites -- the equivalent of genetic scars. The errors build up as more changes are made. Another problem is that traditional editing tools can't faithfully glue large segments together. These issues can be a deal-breaker when biologists want to make hundreds or thousands of changes to an organism's genome, says Chang Liu, a synthetic biologist at the University of California, Irvine. Now, Chin and his MRC colleagues report they have solved these problems. First, the team adapted CRISPR to precisely excise long stretches of DNA without leaving scars. They then altered another well-known tool, an enzyme called lambda red recombinase, so it could glue the ends of the original chromosome -- minus the removed portion -- back together, as well as fuse the ends of the removed portion. Both circular strands of DNA are protected from endonucleases. The technique can create different circular chromosome pairs in other cells, and researchers can then swap chromosomes at will, eventually inserting whatever chunk they choose into the original genome. "Now, I can make a series of changes in one segment and then another and combine them together. That's a big deal," Liu says.

Read more of this story at Slashdot.

Comments

Popular posts from this blog

Slashdot: AT&T Says Leaked Data of 70 Million People Is Not From Its Systems

AT&T Says Leaked Data of 70 Million People Is Not From Its Systems Published on March 20, 2024 at 02:15AM An anonymous reader quotes a report from BleepingComputer: AT&T says a massive trove of data impacting 71 million people did not originate from its systems after a hacker leaked it on a cybercrime forum and claimed it was stolen in a 2021 breach of the company. While BleepingComputer has not been able to confirm the legitimacy of all the data in the database, we have confirmed some of the entries are accurate, including those whose data is not publicly accessible for scraping. The data is from an alleged 2021 AT&T data breach that a threat actor known as ShinyHunters attempted to sell on the RaidForums data theft forum for a starting price of $200,000 and incremental offers of $30,000. The hacker stated they would sell it immediately for $1 million. AT&T told BleepingComputer then that the data did not originate from them and that its systems were not breached. ...

Slashdot: US Plans $825 Million Investment For New York Semiconductor R&D Facility

US Plans $825 Million Investment For New York Semiconductor R&D Facility Published on November 02, 2024 at 03:00AM The Biden administration is investing $825 million in a new semiconductor research and development facility in Albany, New York. Reuters reports: The New York facility will be expected to drive innovation in EUV technology, a complex process necessary to make semiconductors, the U.S. Department of Commerce and Natcast, operator of the National Semiconductor Technology Center (NTSC) said. The launch of the facility "represents a key milestone in ensuring the United States remains a global leader in innovation and semiconductor research and development," Commerce Secretary Gina Raimondo said. From the U.S. Department of Commerce press release: EUV Lithography is essential for manufacturing smaller, faster, and more efficient microchips. As the semiconductor industry pushes the limits of Moore's Law, EUV lithography has emerged as a critical technology to ...

Slashdot: AT&T, T-Mobile Prep First RedCap 5G IoT Devices

AT&T, T-Mobile Prep First RedCap 5G IoT Devices Published on October 15, 2024 at 03:20AM The first 5G Internet of Things (IoT) devices are launching soon. According to Fierce Wireless, T-Mobile plans to launch its first RedCap devices by the end of the year, while AT&T's devices are expected sometime in 2025. From the report: All of this should pave the way for higher performance 5G gadgets to make an impact in the world of IoT. RedCap, which stands for reduced capabilities, was introduced as part of the 3GPP's Release 17 5G standard, which was completed -- or frozen in 3GPP terms -- in mid-2022. The specification, which is also called NR-Light, is the first 5G-specific spec for IoT. RedCap promises to offer data transfer speeds of between 30 Mbps to 80 Mbps. The RedCap spec greatly reduces the bandwidth needed for 5G, allowing the signal to run in a 20 MHz channel rather than the 100 MHz channel required for full scale 5G communications. Read more of this story at...